
Neural, Parallel & Scientific computations s (1997) 549-562

Structured Artificial Neural Networks for
Fast Batch LMS Algorithms

K. Goulianurt'2, M. Adamopoulosl'2, and K. G. Margaritisl
^

tDepartment of Informatics, Univeisity of Macedonia" Theisaloniki, Greece'Department of Informatics, Technological Educational Institute of Thessaloniki,
Greece

Abstrect

This paper describes an artificial neural network architecturg which implements
batch-LMS algorithms. The patterns are stored in the network in the form of
interconnection weights, while the convergence of the learning procedure is based on
Steepest Descent algorithm. The objective is to find a set of weights, so that the sum of
the squares of the errors is minimized. In this paper we show thit by using an adaptive
learning rate, the network implements the Steepest Descent method of numerical linear
algebra for solving linear systems of equationi. With the application of Delta Rule in
the learning procedure the system of normal equations is solved and the set of weights
generated by the Jearning procedure satisfies convergence to the optimal least squares
solution for all kinds of systems (norma[overdetermined or underdetermined), while
the number of iterations needed for convergence is significantly decreased. Extension
to matrix inversion is also presented and convergence behaviour and performance by
computer simulations are discussed.

1. INTRODUCTION

Feedforward artificial neural networks have been studied extensively and have been
proved capable of solving a wide variety of problems t5lt12lt17l. Most applications of
these networks use some type of training procedure in order to utilise aiiociations of
input patterns to output patterns. These relations can be either auto-associative or
hetero-associative, i.e. they correlate a set of patterns either to themselves or to another
set of patterns.
. Recently, many feedforward neural networks architectures with linear neurons for

solving systems of linear equations and matrix algebra problems have been studied and
implemented t10l-tl4tl3ltl9l-t201. The matrix algebra problem is represented with
some architecture and a training algorithm (usually Back-Propagation t16D is used, so
that the network matches the desired patterng and the solution to the problem is given
by the trained weights of the network. In the above architectures, the networks oittOl-
tllltl3ltlgl are two-tlimensional (2-D), whereas the network t20l is three-dimensibnil
(3-D), a fact that introduces a higher degree of paralletism. When used for linear
system equation solving the networks in tl0l-tl{ use a simple architecturg with n
input neurons and 1 output neuron, whereas the network t13l (called Orthogonahzed
Back Propagation) uses n input neurons, a hidden layer with m neur<ing and I output
neuron. The networks [l9]-[20J are applied for finding the inverse of matrix A and a
network with n input neurons, a hidden hyer bith n neurons, and n output n"uiont
is used in [19] while the network [20] uses n networkg each one having n input
neurons, a hidden layer with n neurons, and n output neurons. The lines of ihe matiix

Received May 2I, 1997 1061-5369196 $03.50 @ Dynamic Publishers, Inc.

550 Goulianas, Adamopoulos and Margaritis

involved in the matrix algebra problem are presented to the networks [l0J-[11] while in
t13lt19l-t201 the matrix involved is stored in the network in the form of
interconnection weights and linearly independent input vectors are applied. The
network in [llJ is limited to linear systems with matrix A assumed to be Symmetric
and Positive Definite (SPD), in [t9]-[20] matrix A is assumed to be square and the
network is used for finding the inverse of matrix A, while in [0],[13] matrix A can be
of any kind. All the above architectures use the linear activation function, while in the
training procedures the learning rate can be stochastic tllltlgl or adaptive [0],[13[[20].

In this paper the development of a simple two-layer feedforward neural network
with linear neuron functions is studied. The emphasis is placed in the fact that the
proposed architecture solves all types of linear equation systems, since the learning
procedure generates the system of normal equations yielding a least square solution-.
The procedure used is the error function gradien! and it takes two forms: in the first
alternative, the learning rate or stepsize o is determined in a heuristic way, hence the
Heuristic Steepest Descent (HSD) algorithm; in the second and better alternative the
stepsize ct is adaptive yielding the Adaptive Steepest Descent (ASD) algorithm. The
network is trained with vector b as targets, and without using the matrix A as inputs,
since the matrix A with the patterns is stored as weights in the network. The trainable
weights i.e. the vector x are updated, until the network converges, i.e. the outputs of
the network match the desired patterns, and the final trainable weights give the
solution of the problem.

The material is organised as follows. In Section 2 we formulate the problem along
with the optimal solution (using pseudo-inverse), and discuss various algorithmr un,l
associated neural network architectures for obtaining estimates of the optimal solution
vector x, such as the Least Mean Square (LMS) algorithrq both the incremental and
batch version, tllt8ltl0lt2l).In Section 3, we introduce the new architecture along with
the heuristic (equivalent to batch-LMS) and the adaptive learning proceclurg and
discuss convergence issues. The extension of the method for matrix inversion is also
introduced. In Section 4, we study a few examples for systems of various dimensions
comparing the convergence behaviour of the above three methods, as it concerns
convergence, the number of iterations, and we compare the solutions of the above
methods to the optimal least squares solution. along with some experimental results.
Finally, in Section 5 we draw some final conclusions.

2. NEURAL NETWORK ALCORITHMS FOR SOLVING SYSTEMS OF
LINEAR. EQUATIONS

Given a matrix AeR'"n and a vector b€R' the task is to find a vector xeRn, such
that Ax = b. The minimization of. the mean square error, or the cost function

m m m

E(x)= I r, 1*;= I*(.1* - b,)' = +I (al" - b,), = *(n* - b)' (Ax - b)=*llAx - ull, <rl

is the
"n',"rton

orlpti*ulity. using u'u"n"ru, gradient approach for minimization of a
function, the system can be mapped to the equation

VE(x)=tr'1ex-bPo Q)

which is the corresponcling system of normal equations ArAx=Atb or Cx=d, with
C=ArA and d=Arb, where CeRn"n is positive definite and symmetric (i.e.
xrcx >0 for all non-zero xeRn). For such systems the problem is equivalent to
minimizing the functional E(x)= jxtCx-drx. The minimum value of E(x) is
-]dtC-'d achieved by sett ing x=C-rd. Thus, minimising E(x) and solving (Z) are

Structured Artifical Neural Networks 551

equivalent problems. The optimal least mean square solution of system (2) by using the
Moore-Penrose generalised inverse A* is defined as

x = A * b €)

For the overdetermined system Ax=b, with A a (mxn) matrix, the resulting
solution is the Least Squares solution. If r(A)= n, then the least squares solution is
unique, given by

x = A*b , w i th A . = (ArA) - 'A t (4)

where A' is the pseudo-Inverse of the (mx n) matrix A, and satisfies the Moore-
Penrose conditions of A- [4].

For the square or normal system Ax=b, with a square (n x n) non-singular full
rank coefficient matrix A, the solution of (2) is unique. Similarly, the Generalised
Inverse of the (n x n) matrix A, A* defined in (4) is equal to A-r

For the underdetelmined system Ax=b, wi th A a (mxn) matr ix, the resul t ing
solution is one from the infinite least squares solutions.

One approach is to use a hetero-associative one-layer feedforward neural network,
with n inputs and one output neuron (as shown in Figure 1), a special case of Kohonen
Linear Associative Memory t6l. A better approach is to use the Moore-penrose
generalised inverse A*, o special case of Kohonen Optimal Linear Associative Memory

t7Ft8l. The Moore-Penrose generalised inverse A* is calculated, using for example the
Greville's recursive algorithm if m > n, and the interconnection weights between the
input layer and the output neurorL i.e. the solution of equation (2) defined from
equation (3), or (4) are encoded to the network, yielding the optimal least mean square
correlation of A and b.

The above scheme is easy to be implemented but it needs off-line calculation of the
pseudoinverse. However, pseudoinverse can be adaptivelly approximated with the
network in Figure 1. The m lines of matrix A are presented to the network in a
cyclical fashion, and the following LMS learning iterative algorithm t7lt10|[21] is used
for adapting the weights at step t + I (after the i'h fine of matrix A has been
presented to the input layer) :

x(t+l) -x(t) - ct(al* t t ' -b,)a, t =x(t)- aVE,(*(t)) (5)

with vE,(x(')) the instantaneous graclient defined as VE,(x(t))=(alx(')-b,)af,

der ived from E,(x(' r)=*(alx(t) -b,)2, where E,(*(')) is the cost funct ion for the i 'h
pattern, af the ih line of matrix A, ancl a the learning rate.

Input Loyer Output Layer Trai{ng Set

ait

Figure 1. one-Layer structured ANN for Linear system of Equation solving

552 Goulianas, Adamopoulos and Margaritis

This procedure is repeated for a number of iterations, until the error between
calculated and desired outputs is within acceptable limits, forcing the valueS x,,

j = 1,2,. . ., n of vector x to converge to an approximate solution of the system (1). It
has been shown |7\tzll that if the learning rate is small and fixed, then the
consequence of the vectors x generated by the LMS algorithm converge to some
matrix close to the optimal solution of the system (1).

The batch version of the LMS algorithm t1l,t51 uses the total gradient V E(x"')

instead of the approximate VE,(*tt)).In this version, the contributions to the gradient

VE,(x(')) from the m different patterns (the m lines of matrix A) are calculatecl

and summed in order to obtain the total gradient VE1*t'r). The learning procedure for

x(t+r) , k=1,2, . . . ,n at t ime t+l has the form *f . t* t) =*f . ') +o6(') , wi th 6(t) def ined as

6{t) - Arlb-Axrtr; -Atb- ArA*(t), and the adaptation of the weights has the form

x(trr)-x(t)*cr6(t) :*(t)+aA' t (b-Axo) =;(t) -crAr(A*u,-b) - ;a l -aVE(x(,)) (6)

The values Xp, k=1,2,...,n of vector x converge to the solution of the system of
normal equations (2), which minimises the residual errnr.

3. NEURAL NETWORK ARCHITECTURE FOR FAST BATCH-LMS

The LMS learning algorithm is an inexact version of the deterministic gradient
descent algorithm. The gradient of the objective function E(x) is approximated by the

gradient of an individual error function E,(*) for pattern i. Thus, the weight vector

x is updated along the gradient direction of E,(x), a crude gradient estimate in place

of the true gradient of E(x), which is difficult to obtair5 since it involves averaging
the instantaneous gradients associated with all patterns (the lines of matrix A). As a
result, the total error E(x) may not decrease, (in some cases it may increase) and the
convergence is very slow. In addition, the procedure converges to an approximate
solution of the system (2).

We propose a new architecture, better than LMS for the same values of the learning
rate. The network representing (2) is shown in Figure 2. As it can be seerq it is a two-
layer structured neural network consisting of two layers: a hidden layer with n
neurons, each one connected with the neuron of the input layer, and an output layer
with m neurons, fully connected with the hidden layer (the input layer with t neuron
is not considered as a distinct .layer). As an alternativg instead of using the input
neuron, we could use a bias threshold connected to every neuron at the hidden layer
and discard the input neuron.

Input Layer Hidden Layer

Figure 2.TwvLayer Structured ANN

Output Layer Training Set

)i lE

: +tr
' bv'' ful

for Linear System of Equation Solving

Structured Artifi cal Neural Networks 553

The network uses the gradient descent algorithm [6] for minimising the residual
error' The algorithm works as follows: starting at an arbitrary point X(o), o sequence of
improved approximations X(') , x(')

"-,
is generated, such that, for t >0,

x(t+r)-x(t)+o(-VE(xc))), where -VE1vor) is the descent direction defined in (2) and
a is the stepsize. The stepsize o can be constant (determined in a heuristic way), as in
tlltlll't161'[19[simulating the steepest descent method with heuristic line search,'which
leads to a classica.l Back-propagation algorithm, or adaptive during time, as in
tt0lt13lt20| simulating the steepest descent method with exait line search.

we define woj: *;, j =1,2,...,n to be the synaptic weight incoming to the hidden
layer neuron j from the input neuron, so the connections of every hidden layer neuron
i (l< j<n) with the input neuron is the.corresponding jh value of a vector x, of size
n (the solut ion of the system), and w1;=o11r r<j<n, l< i<m to be the synapt ic
weight incoming to the output layer neuron j from the hidden layer neuron i , to be
the corresponding ith row of matrix A .

Comment 3.t A disadvantage of the proposed
neurons and weights is significantly increased if
matrix A) is too large. In this case, we can use

archi tecture havir f* l
t g l ; l n e u r o n s .

3.1. The Heuristic steepert Descent (HsD) Learning Algorithm
The training procedure is as follows: Initially, the interconnection bias weights, Xi,

i -1,2,...,n take random values in (-1, l). An input with the value of 1 is presented in
the input neuron and the corresponding outputs ujt)=(x(t))=*1,) j=1,2,..,,n of the
hidden layer neurons are calculated, with () the simple identity function for neuron
j, xi the connection between the input neuron and the hidden layer neuron j, an<l
t the step of updating (t = 0,1,...). Then, the actual outputs y, for every output layer
neuron i (i=1,2, . . . ,m) at t ime t are calculated

n n n

yl" =(I ui')w1)=(Z *1" uu)= I u,i *1" e)j= l j= l j= t

The discrepancy between desired and calculated output, i.e. the difference between b,
and yft), for i =1,2,...,m is calculated by means of the Delta Rule

d f t ' = b , - y l t ' , i = ! , 2 , . . ' m
G)

Since the connections between the-hidden layer and the output layer is the matrix A,
those connections are constants, and remain unchanged.

architecture is that the number of
the number of patterns (the size of
block-LMS, with k blocks using an

k =1,2,.. . ,n

(e)

Following the back-propagation procedure [16[the calculation of 61,
for the hidden layer has the form

m m

6[' = I *[?df') = Iu* df',, k =1,2,..,n

The weight adaptation procerlure only for the input weights (since input is always l)has the form

554 Goulianas, Adamopoulos and Margaritis

* [t* ') =
" f . t '

+ cr6[" , k =1,2, . , . ,n (to)

where o is the learning rate.
This procedure is repeated for a number of iterations, until the error between

calculated and desired outputs is within acceptable limits. The convergence of the
above algorithm is proved by the following theorem:

THEOREM 3.1. The operation of the ANN in Figure 2 using the HSD algorithm
converges to the Least Squares solution of the linear system (2).

Pr<iof. The value of 6[) , (k -1,2,...,n) at step t , using (7),(8),(9) will be

m m m n m m n

6 f . " = Iu *d [" = Ia ,u (b , - y f ") = Iu ,u (b , - I a ' * , t ") = Iu ,u b , - I a ,u Ia , , x , (') q l l ;
i = l J = l i = l i = I i = l

or in matrix - vector form

6(,) =Ar(b-Ax(,)) =Arb-A' f Ax(t)

The va lue o f x f * t r , (k -1 ,2 , . . . ,n) a t s tep t+1 , us ing (11) , (12) w i t l be * f . ' * t '=* [t '+o6 [')
m m n

- xn(t) +o(Ia,nb, - Ia ,uI* , t "u, ,) , or in matr ix - vector form

x(t+r) -x(t) *']Or 0-;,,) -x(,) - oAr (Ax,,r -b) =*r,r - aVE(x(,))

(r2)

(13)

(14t

which is identical to equation (9) in the batch-LMs algorithnl so the values Xk,
k=1,2,...,n of vector x converge to the solution of the system of normal equations (2),

which minimises the resiclual error (i.e. l im,-- (E(*(t)))=0, if m 3 n, or

l im,-- (E(*('))) becomes minimum, if m > n).

3.2. The Adaptive Steepeet Descent (ASD) Learning Algorithm
The disadvantages of the HSD algorithm is that its convergence rate is very slow,

compared to algorithms that use adaptive stepsize s. as in t10lt13lt20l, with neat
convergence properties. Using the same architecture and training procedure as in HSD,
the new learning procedure differs from HSD in that the weight adaptation procedure

instead of (10) for the input weights wi l l be x[*r l=*t t l *o(t+r)6(t) , k=1,2, . . . ,n or in

vector form x(t l l) -x (t) + o(t l l)6(t) , w i th

6(t)6tt) 5(t)6tt)
_ ^ r (t + l)
\ ' ^ -

6 t t r4r46t t)
-6{ t)g6t t)

where 6(') is defined in (12), the residual error of solving the corresponding system of

normal equations (2).
This procedure is repeated for a number of iterationg until the error betweep

calculated and desired outputs is within acceptable limits. The convergence of the ASD
algorithm is proved by the following theorem:

THEOREM 3.2. Using cr(t+r) clefined in (1a) the ANN of Figure 2 simulates the
Steepest Descent Method.

Structured Artifical Neural Networks
J))

Proof. With E(x) defined in (l), from (2) we have

VE(x)=Q1-d:AtAx -Atb
(, ,)

Using (15), 6(') defined in (14) becomes

6(') =Arb-ArAx(') -d-cx(') = -vE(x(r))
(16)

I f we choose c[(t+r) to minimise E(1t t* t l)=E(x(t) +o(t+r)6(t)1, then c[(t { . r) is g iven from
equation VElcpt'* 'r)=0. By the chain rule using (15),(16) we have

VElx t ' * t r)= VE(x(t) *o (t+ t)6 (t)) = VEq; r , l +o(t+ r)6 (t))6 (t) = [C(1{ t) +cr (t+ r)6 (t l ;_ 6pr t r
=[C;t t) + cr(t* ')C6{t) * 615{t) =J6r(t*r)C6(t) - 6(t)]5(t)

By setting VE1c1r'*ti)=0, we can

defined in equation (14), eED.

(r + t)

O o p t N

see that cr(t+l) is given by c[(t+r) -
6(t)6(t)=ffiU f' u,

THEOREM 3.3- using cr(t+r) clefinecl in (14), the ANN of Figure 2 simulates the
optimal Steepest Descent Method [5] usecl in back-propagation, with c[(t+t) given byt ls l

llt
ttz

(r+,, ;1VE(x0']) l f- -oPt
VE(xf t))V2E(xo);VE(x(,))

Proof. From (15) we have

v2E1;r'r)= V(VE(x,,)))= v(cxr,r - d)= c

ancl using (15),(18), crj"" becomes

llvq*,',{'

(r7)

(18)

ll- u'll' 6(t)6tt)
=

6)86(t) (le)VE(x(q)V' E11r'r)VE(x(,)) (- 6u,)C(- 6*))

as in equation (14), QED.

3.3 Matrix fnversion
The method that have been previously discussed for linear system solution can beextended to cover the solution oi matrix iquations

A X = B
(20)

where A,X and B are (mxn), (nxk) and (mxk) matr ices. Equat ion (20) can be
seen as a set of m systems of linear equations with com*on

"orificient
matrix A.

The problem can be partitioned in solving k systems of linear equations formed by
using the k columns of matrix B. Thus, using k ti-", the ANN of nigur" I we cangenerate the k columns of matrix X. Another alternative is to use a 3- D ANN with
k NNs of Figure 2, in order to solve those equations. Notice that matrix A is stored in

s56 Goulianas, Adamopoulos and Margaritis

the connections between the hidden and the output layer of all NNs involved, since the
coefficient matrix is the same for all systems. The configuration involves k NNs
working in parallet as shown in Figure 3 with the same learning procedures in all
methods presented for every 2-D ANN. A special case of the matrix equation
problem is the solution of the system

AX=I Qr)
for A,X (nxn) matr ices and I the (nxn) ident i ty matr ix. Then, the solut ion is

X= A-r. Thus, it is possible to use n NNs of Figure ! in order to invert a matrix A.

@, xr l"tl
yz, l.tl

q, r-----rln *tij
b, ,-__Yn *L1-l

b.2r-------r
Y^z *L - _l

Input Layer Hidden Layer' Output Layer Training Set

Figure 3. Two-Layer 3-D Structured ANN for solving AX=B

4. EXPBRIMENTAL RBSULTS

To check the performance and the convergence behaviour of the proposed
algorithms for solving system Ax = b, we used some specific examples, and compare
the solutions to the least square (LS) solution. Alsq we have drawn the corresponding
graphs showing the convergence (with respect to the minimisation of the Mean Squaie
Error) of the three algorithms through time in a VAX 4200 machine.

Bxample t The square linear system of equations to be solved is:

ymr :.td

h. r----r*l_lj

E
b.rf------'l*ul

I t . z o8 0 .7 os ' l [x , I t - l l
loo rs 03 o'I l . ; I l , I
lot os t7 onll-, 1=lrl
L0 l 05 0 .6 t zJ f xo j Lq]

Given zero initial values to the synaptic weights, and using

E(*):l lex-ull '

Structured Artifi cal Neural Networks 557

(22)

as the total mean square error, the same used by Wang L.X. and Mendel J. [20] the
convergence behaviour of the above training algorithms is shown in Figure i, *tret"
the horizontal axis denotes the training cycle ! and the vertical axis thJ mean square
error given in (23). With t = 10-5, ASD algorithm converges in 50 training cycles to ttte
solution

XRSD =[* , , * r ,X3,X4] t = [- t .30014, l . s l3z4 , -0 .12329,2 .g70g5] r

with

rAsD =
ltr,t, 13, 14lr =

[o ooo46, 0.00010, - 0.0007g, 0.00235]r

which is close to the exact least squares solution of system (22)

XLS = l-t.zesst,1.s1346,-0.12535, z.g:nTzlr e4)
obtained by using Greville's algorithrq and better than the estimation obtained by
Wang L.X. and Mendel J. t20l

* = [- l .2 t653, 1 .470s3,0 .16055, 2 .353001r

r =
[o.oos+8, 0.00265, 0.00465, 0.00215]r

Given zero initial_values _to th9 synaptic weights, and using a= 0.01 as learning rate for
LMs and HSD, HSD algorithm (which is_.equivalent to the batch-LMS method)
converges in 1351 training cycles, with e = l0-', to the solution

XHsD = [-t.zeels, l.5l 3zg, -0.lzz4l 2.g7013]r

rHsD = [-o.ooool, -0.00023, -0.00167, 0.002651r

whereas incremental LMS algorithm converges in 1341 training cycles, with e : 10-s, to
the solution

Xr.r,rs = [-t.roooz, 1.51330, -a.lzz42, 2.g7ol6]r

rLrurs = [-o.oooot, -0.00024, -0.0016g, 0.00261]r

Conment 4.t In order to allow a more meaningful comparison between the
incremental LMS method and HSD (or the equivalent batch-LMS method) one learning
step of incremental LMS algorithm is taken to mean a full cycle through ttr" ti
samples (the m lines of matrix A).

Comnent 4.2: As it is shown in Figure d the.behaviour of the incremental LMS and
HSD method is similar and the number of iterations needed for LMS and HSD to
converge is almost the same as stated in t1[t21] whereas with the application of ASD

(23)

5s8 Goulianas, Adamopoulos and Margaritis

algorithm the mean square error is decreased rapidly, and the number of iterations
needed for convergence is too small compared to the other two methods.

Comnent 4.32 For e = 10-e the above algorithms converge to the least square solution
Qg of the system (22) but the number of iterations needed to converge is increased.

32

24

E(x) 16

8

0
I l0 100 1000

train ing cycle t

Figure 4. Convergence behaviour of LMS, HSD, and ASD for square linear system in Example 1

Example 2: The underdetermined linear system of equations to be solved is:

lz
-r 4 o 3

15
l -3 | 2

L l -21-s - l

r l

;l
x l

x 2

x 3

x4

x 5

x 6

(2s)Ij]
Given zero initial values to the synaptic weightg and using E(x)=*llA* - bllt for the
total mean square error, as defined in (1), the convergence behaviour of the above
training algorithms is shown in Figure 5, where the horizontal axis denotes the training
cycle t, and the vertical axis the mean square error given in (l). With r - 10-s, ASD
algorithm converges in 8 training cycles to the solution

xAsD = [o.osrzo, 0.10826, 0.2732r, 0.50457, 0.3927s, - 0.30965]r

rAsD = [o.oooze, 0.00001, -0.000761r

which is a close estimation of the exact least square solution of the system (25), and
close to the estimation achieved by Cichocki and Unbehauen [3]

* =
[o.oas2, 0.1083, 0.273i , 0.5047,0.3828, - 0.3097]r

Given zero initial values to the synaptic weightg and using cr= 0.01 as learning
coqfficient for HSD and LM$ HSD algorithm converges in 24 training cycles, with e =
lO5, to the solution

XH'D =[o.otsrz, 0.10832, 0.27279, 0.s0444, 0.38254, -0.309601r

rHso = [o.ooes+, -0.00r 12, -0.00133]r

whereas LMS converges in 23 training cycles, with e = 10-5, to the solution

559Structured Artifical Neural Networks

xLMs = [o.osszz, 0.10934, 0.272g1, 0.50451, 0.3g255,

rLMs = [o.oozso, -0.000g5, -0.0007lJr

- o.3oe65Jr

t2
l0
8

E(x) 6
4
,)
0

i

100

Figure 5' Convergence behaviour of AsD, HsD, and LMS for underdetermined linear system forExample 2

Exemple 3: The overdeterminecl linear system of equations to be solved is:

[t r- l l-r l
t t t l
l l 21 . _ , l r l
I r ,l l: ' l= l ' l e6)l t lL* ' j l r r
t . _ t t t
Lr sJ L3j
since system (26) is overdetermined, the application of the algorithms will give a leastsquares solutiorg which minimises the meantquare error definid il iil but it will neverbe zero. Thus, we use the following convergence criterion

A* = l l*, '
r) - x(t) l l , = I l* j ,- ' , - * j , , l= ,o , (27)

j= l

in order to terminate the algorithms, with t=0,1,-. the training cycle. The convergencebehaviour of the above training algorithms is shown in Figur! o, *tr"r" the horizontalaxis denotes the training cycle t, and the vertical axis the"mea; rq;;t" error given in(1)' with 6 = lO-s, given zero initial values to the synaptic weights, ASD algorithmconverges in 4 training cycles, with E(x) = 0.20000 to iheiolution"

XAsD = [*,,", Jr = [o zoooo, 0.60000]r

which is in excellent agreement with the exact least square solution of the system (26)

XLs = [*,,"rJt = [o.zoooo, 0.60000l' (u,

obtained by using Greville's algorithm. The residual vector of the ASD solution is

rAsD = lrr,rr,t3,r4,trJt =
[-o.zoooo, 0.40000, 0.00000, - 0.40000, 0.20000Jr

This solution is better than the estimation achieved by cichocki and Unbehauen [2]

560

x = [o.zoo, 0.59a]'

r = [-0, 196, o.4oz, o, - o.4oz, o. teo]t

Given zero initial values to the synaptic weights, and using
coefficient for HSD, the algorithm converges in 4I7 training
0.20009 to the solution

XHsD = [o.teeoo, 0.60025lr

rHsr.r =
[,o.zoooo, 0.3ggsg, - 0.00015, - 0.39990, 0.200351r

Given zero initial values to the synaptic weights, and using
c<refficient for LMS, the algorithm converges in 456 training
0.22634, to the solution

XL\{s = lo.zzzst, o.59o8olr
rLMS = l-0 . nezz,o. 4045 9.-0. 0046 l,-0.4 I 3 g 1,0. 17 6gglr

Goulianas, Adamopoulos and Margaritis

c[= 0.01 as learning
cycles, with E(x) =

ct- 0.01 as learning
cycles, with E(x) :

L2

8
E(x)

4

0

r in ing cyc le t

Figure 6. Convergence hehaviour of ASD, HSD, and LMS for overdetermined linear system for
Example 3

Comment4,4z I f we use Ax=l lxt ' - ' r -* , ' ,11, <10-e insread of (27) for HSD ancl LMS

algorithnl HSD converges to the least square solution of the system (26) in t502
training cycles, while the solution of LMS is getting worse, increasing the training
cycles and the residual error.

Discusaion: For square and underdeterrnined linear systems of equations as in (22),(25),
all three algorithms for small values of the learning rate (used in HSD and LtrfS)
converge to the same and only solution (the Least Square solution A-'b for square
systems or A.b for underdetermined) or a close estimation of the Least Square
solution. For such systems, the performance of ASD algorithm is better than HSD and
LMS (the number of iterations needed for ASD in order to converge is very small
compared to the others).

For overdetermined linear systems of equations as in (26), only ASD converge to the
Least Square solution A*b using the total error as defined in (l). HSD and LMS
converge to an approximation of A*b, with HSD giving a better approximation than
LMS. For such systems, the performance of ASD algorithm is better than HSD and
LMS.

Example 4: Find the pseudo-inverse of the singular matrix

1000100l0

Structured Artifical Neural Networks

0.8 0.7 orl
15 0 .3 o t I
0 .s r .7 0e l
os 0 .6 t2)

(2e)

which is a good estimation of the Least Square solution obtained by using Greville's
algorithm

(30)

561

1,,
lo .a

A = l

lo t
L0.l

Applyitlg the ANN
9-f -Figul" 3 or the ANN of Figure 2 four times, and using t1"0,0,01r,

[0,1,0,0]r, [0,0,1,011 to,o,oJlt as vector b, we can find the four columns of matrix
X = A * .

Given zero initial values to the.synaptic weightsr.ald using_g=0.0l as the learning
rate for HSD and_LMl,.AsD algorithm converges w_rth e = ld{, in 30 trainint"y;i;;
for column [, in 37 training cycles for column {in 36 training cycles for columi 3, unO
in 40 training cycles for column d to the solution

| 0.ee4e3 _0.37772 _0.28277 _0.r7n2f

X^o^ = A* = l-o.zotot
0.79883 -0.06353 0.0926r I

|
0.0076e _0.07447 0.80851 _0.60289

|
| 0.02377 _0.26244 _0.35240 1.10766l

I
o.esar+ -0.3806e -0.2831e _0.t7r77j

X,. = A_r _ l-0.26927
0.80037 -0.06314 009285

|
| 0.006e6 _007242 0.81198 _0.605ss I
I o.ozssr -0.26sss -0.35608 r.r r las J

I
osezst -0.37687 _o.zrz4t _aJTz;rl

X_o^ = A* = I
-0.26638 0.79808 -0.06333 0.092s3 I

|
00080e _0.074e3 0.80786 _0.60170

|
I o.oztto -0.z6zts _0.350e9 1.10678 J

I
o.r:sz -0:76s7 -o.zsz3r -0.t72271

=l-oz00u 0.7e8t I -0.06334 0.0e284 I
|

0 007e4 -0.0748s 0.807e0 _0.60t741

L 0.023e4 -0.26227 _0.35107 1.10686J

HSD algorithm converges with e = l0-s in 843 training cycles for column I, in g4l
training cycles for column 2, in 1059 training cycles foriolumn 3, and in ll49 irri"i"g
cycles for column d to the solution

and LMS algorithm converges with e : 10-s in 834 training cycles for column I, in g34
training cycles for column 2, in 1049 training cycles for c6tumn 3, and in 1140 iruining
cycles for column d to the solution

Xrr, = An

The convergence behaviour of the a!9ve training algorithms for finding the inverse
matrix of A in Example 4 is shown in Figure 7. Aslt cin be see& th; behaviour of the
incremental LMS and HSD method is simitar, vhile the numbei oi itrtutions needed
for LMS and HSD to converge is almost tire same. with the application of ASD
algorithm the Mean squared Error is decreased rapidly, and the *"iu"r of iterations

562

needed for convergence is too small
10-e, the above algorithms converge
but the number of iterations needed

Goulianas, Adamopoulos and Margaritis

compared to the other two
to the least square solution
to converge is increased.

methods. If we use t :
(30) of the system (29)

0,6
qs
0,4

E(x) 0J
o,2
0.1
0

0,6
0,5
0,4

Etx) Q3
0,2
ql
0

0,6
0,5
0,4

E(x) 0,3
0,2
0,1
0

tnininS cycle t

(a)

0,6
0,5
0,4

E{x) 0,3
0,2
0,1
0

training cfcl€ t

(c)

trrining cycle t

(d)

Figure 7. Convergence behaviour of ASD, HSD, and LMS algorithm for column 1 (a), column 2 (b), column
3 (c), and column 4 (d) of matrix A for matrix inversion in Example 4

5. CONCLUSTONS

In this paper we discussed the issue of a neural network design and implementation
for solving linear systems of equations. Delta Rule for network training is modified in
order to lead to a batch-LMs algorithrn, whereas the use of an adaptive learning rate
implements the steepest descent method. We have proven the capability of the
proposed network for solving any kind of linear systems of equations. We used
numerical examples in order to demonstrate operating characteristics of the proposed
neural network. Simulations was performed to estimate the performance, i.e. the

training cycles required to reduce the mean squared error by a fraction of e:10-s, and
the comparison of the solutions taken to the least squares solution. The fact that
distinguishes our implementation from previous ones is the simplicity of its
architecture and its training algorithrq along with the fact that it exceeds the
limitations of matrix A needed to be SPD. In addition, the ASD training algorithm

proposed with adaptive stepsize o has neat convergence properties and guarantees fast
network convergence to the optimal solution for any kind of linear system of
equations but it is hard to be implemented in VLSI circuits because of the off-line
calculations needed and the size of matrix A, which can be too large. On the other
hand, the HSD algorithm (equivalent to batch-LMs) converges for sufficiently small

values of the stepsize cr ITLl2ll to a solution close to the optimal solution but
convergence analysis is difficult and its convergence rate is very slow.

t l l

t ,2 l

REFERENCBS

Battiti, R., "First- and Second-Order Methods for Learnipg: Between Steepest
Descent and Newton's Method", Neural Computation (L992), Vol 4 pp. 141-166.
Cichocki, A. and Unbehaue& R, "Neural Netwot'ks for Solving Systems of Linear-
Equations and Related Problems", fEEErTransactions on Circuits and Systems I -
Fundamental Theory and Applications, (1992), VoL 39, no.e pp. 124-138.

Structured Artifical Neural Networks 563

3] Cichocki, A. and Unbehaueo, R, "simplified Neural Networks for Solving Linear
Least Squares and Total Least _squares Problems in Real Time'i IEEETransactions on Neural Networks, (1994), vol 5, no. 6, pp. 910-923-

4l Golub, G. H, and van Loan c.F, "Matrix computaiions", The rohn Hopkins
University Press, Baltimore, MD, 19g3.

5l Hassoun, M. H, "Fundamentals of Artificial Neural Networks,,, The MIT press,
Cambridgg Massachusetts OZI42, 1995.

6l Kohonen T, "Correlation Matrix Memoriesu, rEEE Transactions on Computers, C-2l (4), pp. 353-359, Ig7Z.
7l Kohonen T' "Al Adaptive Associative Memory Principle'i IEEE Transactions on

Computers, pp. M4-445, lg7 4.
8l Kohonen T, "Self-Organisation and Associative Memory", Springer-Vertag 19g4.9l Luenberger, "Introduction to Linear and Non-lineai brogffiming,,

-Addiror-
Wesley, Reading MA, 1973.

tl0l Luo Zhi-Quan, "On the Convergence of the LMs Algorithm with Adaptive
Learning Rate for Linear Feedforward Networks", Neiral Computation Cigqf),Vol. 3, pp.226-245.

[lU Margaritis K.G, Adamopoulos M., Goulianas K, and Evans D.J., ,,Artificial Neural
Networks and Iterative Linear Algebra Methods", paralt& Algorithms and
Applications (1994),Vol. 3, pp. 3l-44.

-

II2l Maren A.J' Harstgl9.T, Pap R.M, "Handbook of neural computing applications,,,
Academic Press,1990.

t13] Polycarpou M. and Ioannou P:,_?jTning and Convergence Analysis of Neural-
Type Struc-tured Networks', IEEE Traniactions on Neitral Netwirks (lgg2), VoL
3, no. I, pp. 39-50.

lr4l Rosenblatt F, "Principles of neurodynamics", spartan Books,1962.
t15l Rumelhart D.E, McClelland J, "Parallel distributed processing: niprorations in themicrostructure of cogniti on,, MIT press, l9f!6.
tl6l Rumelhart D.E, Hinton G.E, g_n9 Williams R.J, "Learning Internal representation

-bI :-tt-gt propagation", Parallel Distributed Processingi iil"lhait o.g., anJ
McClelland J, Eds, Cambridgg MA, MIT press, 19g6.

ur simpson PK, "Artificial Neural systems", pergamon press, 1990.
t18l Tsypkin, Ya. Z,'Adaptation and Learning in-Automatic System!,, translated by Z.J. Nikolic, Academic press, New yorlq l9?L
tlgl Wang L. X. and Mendet J.M., "Parallel Structured Networks for Solving a WicleVariety of _-!r^1trix__Algebra Problems", rournal of parallel and Distributed

Computing(1992), Vo[14, pp.236-247.
t20l Wang L. X. and Menclef J. M., "Three-Dimensional Structured Networks for

tvtat{1 equation Solving", rEEE Transactions on Compurers tfggi), VoL 4e no. lipp. 1337-1346.
' \-- - -

tzll widrow B, and Lehr M, "30 YpaS of Adaptive Neural Networks: perceptror5
Madaline and Backpropagation", proceedingi of the rEEE vot z& M.

'9;
;;r4rs-t442 t990.

