Neural, Parallel & Scientific Computations 5 (1997) 549-562

Structured Artificial Neural Networks for
Fast Batch LMS Algorithms

K. Goulianasl’z, M. Adamopoulosm, and K. G. Margaritisl
'Department of Informatics, University of Macedonia, Thessaloniki, Greece
Department of Informatics, Technological Educational Institute of Thessaloniki,
Greece

Abstract

This paper describes an artificial neural network architecture, which implements
batch-LMS algorithms. The patterns are stored in the network in the form of
interconnection weights, while the convergence of the learning procedure is based on
Steepest Descent algorithm. The objective is to find a set of weights, so that the sum of
the squares of the errors is minimized. In this paper we show that by using an adaptive
learning rate, the network implements the Steepest Descent method of numerical linear
algebra for solving linear systems of equations. With the application of Delta Rule in
the learning procedure the system of normal equations is solved, and the set of weights
generated by the learning procedure satisfies convergence to the optimal least squares
solution for all kinds of systems (normal, overdetermined or underdetermined), while
the number of iterations needed for convergence is significantly decreased. Extension
to matrix inversion is also presented and convergence behaviour and performance by
computer simulations are discussed. ;

1. INTRODUCTION

Feedforward artificial neural networks have been studied extensively and have been
proved capable of solving a wide variety of problems [SL[12}[17]). Most applications of
these networks use some type of training procedure in order to utilise associations of
input patterns to output patterns. These relations can be either auto-associative or
hetero-associative, i.e. they correlate a set of patterns either to themselves or to another
set of patterns.

Recently, many feedforward neural networks architectures with linear neurons fer
solving systems of linear equations and matrix algebra problems have been studied and
implemented [10]-[11}[13}[19]-{20]. The matrix algebra problem is represented with
some architecture and a training algorithm (usually Back-Propagation [16]) is used, so
that the network matches the desired patterns, and the solution to the problem is given
by the trained weights of the network. In the above architectures, the networks of [10}-
[11}[13}[19] are two-dimensional (2-D), whereas the network [20] is three-dimensional
(3-D), a fact that introduces a higher degree of parallelism. When used for linear
system equation solving, the networks in [10}-[11] use a simple architecture, with n
input neurons and 1 output neuron, whereas the network [13] (called Orthogonalized
Back Propagation) uses n input neurons, a hidden layer with m neurons, and 1 output
neuron. The networks [19]-{20] are applied for finding the inverse of matrix A and a
network with n input neurons, a hidden layer With n neurons, and n output neurons
is used in [19], while the network [20] uses n networks, each one having n input
neurons, a hidden layer with n neurons, and n output neurons. The lines of the matrix

Received May 21, 1997 1061-5369/96 $03.50 © Dynamic Publishers, Inc.

550 Goulianas, Adamopoulos and Margaritis

involved in the matrix algebra problem are presented to the networks [10}-[11]}, while in
[131[19]-[20] the matrix involved is stored in the network in the form of
interconnection weights and linearly independent input vectors are applied. The
network in [11] is limited to linear systems with matrix A assumed to be Symmetric
and Positive Definite (SPD), in [19]-[20] matrix A is assumed to be square and the
network is used for finding the inverse of matrix A, while in [10][13] matrix A can be
of any kind. All the above architectures use the linear activation function, while in the
training procedures the learning rate can be stochastic [111[19] or adaptive [101,(131[20].

In this paper the development of a simple two-layer feedforward neural network
with linear neuron functions is studied. The emphasis is placed in the fact that the
proposed architecture solves all types of linear equation systems, since the learning
procedure generates the system of normal equations yielding a least square solution.
The procedure used is the error function gradient, and it takes two forms: in the first
alternative, the learning rate or stepsize o is determined in a heuristic way, hence the
Heuristic Steepest Descent (HSD) algorithm; in the second and better alternative the
stepsize o is adaptive yielding the Adaptive Steepest Descent (ASD) algorithm. The
network is trained with vector b as targets, and without using the matrix A as inputs,
since the matrix A with the patterns is stored as weights in the network. The trainable
weights i.e. the vector x are updated, until the network converges, ie. the outputs of
the network match the desired patterns, and the final trainable weights give the
solution of the problem.

The material is organised as follows. In Section 2 we formulate the problem along
with the optimal solution (using pseudo-inverse), and discuss various algorithms and
associated neural network architectures for obtaining estimates of the optimal solution
vector X, such as the Least Mean Square (LMS) algorithm, both the incremental and
batch version, [11[8][10},[21]. In Section 3, we introduce the new architecture along with
the heuristic (equivalent to batch-LMS) and the adaptive learning procedure, and
discuss convergence issues. The extension of the method for matrix inversion is also
introduced. In Section 4, we study a few examples for systems of various dimensions
comparing the convergence behaviour of the above three methods, as it concerns
convergence, the number of iterations, and we compare the solutions of the above
methods to the optimal least squares solution. along with some experimental results.
Finally, in Section 5 we draw some final conclusions.

2. NEURAL NETWORK ALGORITHMS FOR SOLVING SYSTEMS OF -
LINEAR EQUATIONS

Given a matrix AeR™" and a vector beR™ the task is to find a vector xeR", such
that Ax =b. The minimization of the mean square error, or the cost function

E(x)=§&(x)=§%(a?x—bi>’ :%g(a?x—bi)z = 1(Ax-b) " (Ax— by=t|Ax - bf* (1)

is the criterion of optimality. Using a general gradient approach for minimization of a
function, the system can be mapped to the equation

VE(x)=A" (Ax-b)=0 @

which is the corresponding system of normal equations A"Ax=A"b or Cx=d, with
C=A"A and d=A"b, where CeR"™" is positive definite and symmetric (ie.
x"Cx>0 for all non-zero xeR"). For such systems the problem is equivalent to
minimizing the functional E(x)=1x"Cx-d"x. The minimum value of E(x) is
-3d"C"'d achieved by setting x=C"'d. Thus, minimising E(x) and solving (2) are

Structured Artifical Neural Networks 551

equivalent problems. The optimal least mean square solution of system (2) by using the
Moore-Penrose generalised inverse A" is defined as

x=2A'h ' 3)

For the overdetermined system Ax=b, with A a (mxn) matrix, the resulting
solution is the Least Squares solution. If r(A)=n, then the least squares solution is
unique, given by

x=A"b, with A" =(ATA)'A” 4)

where A" is the pseudo-Inverse of the (mxn) matrix A, and satisfies the Moore-
Penrose conditions of A" [4].

For the square or normal system Ax=b, with a square (n x n) non-singular full
rank coefficient matrix A, the solution of (2) is unique. Similarly, the Generalised

Inverse of the (n x n) matrix A, A" defined in (4) is equalto A~ .

For the underdetermined system Ax=b, with A a (mx n) matrix, the resulting
solution is one from the infinite least squares solutions.

One approach is to use a hetero-associative one-layer feedforward neural network,
with n inputs and one output neuron (as shown in Figure 1), a special case of Kohonen
Linear Associative Memory [6] A better approach is to use the Moore-Penrose

generalised inverse A", a special case of Kohonen Optimal Linear Associative Memory

[7}H[8]. The Moore-Penrose generalised inverse A* is calculated, using for example the
Greville’s recursive algorithm if m>n, and the interconnection weights between the
input layer and the output neuron, ie. the solution of equation (2) defined from
equation (3), or (4) are encoded to the network, yielding the optimal least mean square
correlation of A and b.

The above scheme is easy to be implemented, but it needs off-line calculation of the
pseudoinverse. However, pseudoinverse can be adaptivelly approximated with the
network in Figure 1. The m lines of matrix A are presented to the network in a
cyclical fashion, and the following LMS learning iterative algorithm [7][10}{21] is used
for adapting the weights at step t+1 (after the i™ line of matrix A has been
presented to the input layer) :

x"D =xY-o(a] xV-b,)a =x - aVE, (xV) 5)
with VE (x)) the instantaneous gradient defined as VE, (x)=(a; x®-b,)a],

derived from E,(x)=3(a] x”-b,)?, where E,(x™) is the cost function for the i®

pattern, a] the i" line of matrix A, and o the learning rate.

Trainjng Set

Input Layer Output Layer

Figure 1. One-Layer Structured ANN for Linear System of Equation Solving

552 Goulianas, Adamopoulos and Margaritis

This procedure is repeated for a number of iterations, until the error between
calculated and desired outputs is within acceptable limits, forcing the values x,,

j=12,...,n of vector x to converge to an approximate solution of the system (1). It

has been shown [7][21] that if the learning rate is small and fixed, then the
consequence of the vectors x generated by the LMS algorithm converge to some
matrix close to the optimal solution of the system (1).

The batch version of the LMS algorithm [1}[5] uses the total gradient V E(xV)
instead of the approximate VE,(x‘). In this version, the contributions to the gradient
VE,(x") from the m different patterns (the m lines of matrix A) are calculated
and summed in order to obtain the total gradient VE(xV). The learning procedure for
x("Y k=12,..,n at time t+] has the form x{*"? =x{ +a8®, with § defined as

5© = AT(b—Ax®) =A"b— A"Ax", and the adaptation of the weights has the form

x=x®+a8V=xV + a AT (b-Ax?) =x“ - a AT (AxV~b) =x© - aVE(x") (6)

The values x,, k=1,2,.,n of vector x converge to the solution of the system of
normal equations (2), which minimises the residual error.

3. NEURAL NETWORK ARCHITECTURE FOR FAST BATCH-LMS

The LMS learning algorithm is an inexact version of the deterministic gradient
descent algorithm. The gradient of the objective function E(x) is approximated by the

gradient of an individual error function E,(x) for pattern i. Thus, the weight vector
x is updated along the gradient direction of E;(x), a crude gradient estimate in place
of the true gradient of E(x), which is difficult to obtain, since it involves averaging

the instantaneous gradients associated with all patterns (the lines of matrix A). As a
result, the total error E(x) may not decrease, (in some cases it may increase) and the
convergence is very slow. In addition, the procedure converges to an approximate
solution of the system (2).

We propose a new architecture, better than LMS for the same values of the learning
rate. The network representing (2) is shown in Figure 2. As it can be seen, it is a two-
layer structured neural network consisting of two layers: a hidden layer with n
neurons, each one connected with the neuron of the input layer, and an output layer
with m neurons, fully connected with the hidden layer (the input layer with 1 neuron
is not considered as a distinct layer). As an alternative, instead of using the input
neuron, we could use a bias threshold connected to every neuron at the hidden layer
and discard the input neuron.

bl
=Pk %
b
1 L% & 2
: b'm
—b Yo “— m
Input Layer Hidden Layer Output Layer Training Set

Figure 2. Two-Layer Structured ANN for Linear System of Equation Solving

Structured Artifical Neural Networks 953

The network uses the gradient descent algorithm [16] for minimising the residual
error. The algorithm works as follows: starting at an arbitrary point x, a sequence of
improved approximations x,x® . s generated, such that, for t>0,
x“V=xY+ a(- VE(x")), where — VE(x") is the descent direction defined in (2) and

a is the stepsize. The stepsize o can be constant (determined in a heuristic way), as in
[1L[11}[16][19], simulating the steepest descent method with heuristic line search, which
leads to a classical Back-propagation algorithm, or adaptive during time, as in
[10}[13}[20], simulating the steepest descent method with exact line search.

We define Wo= X;, j=12,..,n to be the synaptic weight incoming to the hidden
layer neuron j from the input neuron, so the connections of every hidden layer neuron
j (1=j<n) with the input neuron is the corresponding j™ value of a vector X, of size
n (the solution of the system), and W;=a;, ISj<n, ISi<m to be the synaptic
weight incoming to the output layer neuron j from the hidden layer neuron i, to be

the corresponding i" row of matrix A.

Comment 3.1: A disadvantage of the proposed architecture is that the number of
neurons and weights is significantly increased if the number of patterns (the size of
matrix A) is too large. In this case, we can use block-LMS, with k blocks using an

. . m
architecture having I-I-I neurons.

3.1. The Heuristic Steepest Descent (HSD) Learning Algorithm
The training procedure is as follows: Initially, the interconnection bias weights, x,,

j=12,..,n take random values in (-1, 1). An input with the value of 1 is presented in
the input neuron and the corresponding outputs uﬁ')=f(x§'))=x§‘) j=12,..,n of the
hidden layer neurons are calculated, with f{) the simple identity function for neuron
J» X; the connection between the input neuron and the hidden layer neuron j, and

t the step of updating (t = 0,1,.). Then, the actual outputs y, for every output layer
neuron i (i=1,2,...,m) at time t are calculated

n n n
v =f(ZUE°W,»a)=f(ZX§"aU)= Zaijxj‘) Q)
j=1 j=1 j=1

The discrepancy between desired and calculated output, ie. the difference between b,
and yf", for i=1,2,...,m is calculated by means of the Delta Rule

4 =b,~y®, i=12,..m o

Since the connections between the hidden layer and the output layer is the matrix A,
those connections are constants, and remain unchanged.

Following the back-propagation procedure [16], the calculation of O k=12
for the hidden layer has the form

m

80 =2 wild®=3"2,4d", k=1,2,.n ®
i=1

i=1

The weight adaptation procedure only for the input weights (since input is always 1)
has the form

554 Goulianas, Adamopoulos and Margaritis

x it L a2 T (10)

where o is the learning rate.

This procedure is repeated for a number of iterations, until the error between
calculated and desired outputs is within acceptable limits. The convergence of the
above algorithm is proved by the following theorem:

THEOREM 3.1. The operation of the ANN in Figure 2 using the HSD algorithm
converges to the Least Squares solution of the linear system (2).

Proof. The value of 8¢, (k=1,2,...,n) at step t, using (7),(8),(9) will be

5= gaikdf” Za,k(b ~y{") = Za,k (b, Za,,X,“’) Za.k b, Za,kZa,, X, (b
or in matrix - vector form

59 =AT(b-Ax®) =ATb- AT Ax® 1)
The value of x!"?, (k=1,2,..,n) at step t +1, using (11),(12) will be x{"*" =x{ +adl’

m n
=% +a(z a,b, —Z aikaj(')aij), or in matrix - vector form

x®V=x0+aAT(b-Ax") =x - a AT (AxV-b) =x - aVE(x") 13)

which is identical to equation (9) in the batch-LMS algorithm, so the values x,,
k=1,2,...,n of vector x converge to the solution of the system of normal equations (2),
which minimises the residual error (ie. lim__(E(x®))=0, if m<n, or

lim (E(x“))) becomes minimum, if m>n).

Iaao

3.2. The Adaptive Steepest Descent (ASD) Learning Algorithm
The disadvantages of the HSD algorithm is that its convergence rate is very slow,

compared to algorithms that use adaptive stepsize o as in [10][13]{20], with neat
convergence properties. Using the same architecture and training procedure as in HSD,
the new learning procedure differs from HSD in that the weight adaptation procedure

instead of (10) for the input weights will be x{""=x"+a 8" k=12,..n or in
vector form x®V=xO+ V5"V with

6(!)6(0 5(')5(!)

a(H]) = 6(0A As(l) 8(!)C8(t) (14)

)

where &

normal equations (2).

This procedure is repeated for a number of iterations, until the error betweep
calculated and desired outputs is within acceptable limits. The convergence of the ASD
algorithm is proved by the following theorem:

is defined in (12), the residual error of solving the corresponding system of

THEOREM 3.2, Using a“*" defined in (14) the ANN of Figure 2 simulates the
Steepest Descent Method.

Structured Artifical Neural Networks 333

Proof. With E(x) defined in (1), from (2) we have

VE(x)=Cx-d=A"Ax -A"b » (15)
Using (15), 8 defined in (14) becomes

8 =ATb-ATAx® =d-Cx®) = _VE(x®) , 16)

If we choose """ to minimise E(x""")= E(x® +a™*P8O) then 0" is given from
equation VE(a“"”)=0. By the chain rule using (15),(16) we have

VE(X(HI)): VE(X(‘) +a(t+l)5(t)) ZVE(X“) +a(l+1)5(t))6(t) :[C(x(t) +a(t+l)6(‘))_ d]a(t)
=[Cx© +aVCEO — gD [0V CE® ~5Wp®
(06([)
By setting VE(a"*")=0, we can see that o) ijs given by a(”"zm, as

defined in equation (14), QED.

THEOREM 33. Using a*” defined in (14), the ANN of Figure 2 simulates the

Optimal Steepest Descent Method [5] used in back-propagation, with o given by
[18]

[vE®)|
"~ VE(x®)V'E(x")VE(x") D
Proof. From (15) we have
VE(x")= V(VE(x"))= V(Cx" -d)=C 18)
and using (15),(18), 0;;;" becomes
2
e "VE(X(I))”2 u_ 6(‘))" 6(!)8(!)
s = 19)

opt "~ VE(X('))VZE(X(O)VE(X(U) = (_8(1))C(- 8(1)) = 59Cs®
as in equation (14), QED.

3.3 Matrix Inversion
The method that have been previously discussed for linear system solution can be
extended to cover the solution of matrix equations

AX=B (20)

where A,X and B are (mxn), (nxk) and (mxk) matrices. Equation (20) can be
seen as a set of m systems of linear equations with common coefficient matrix A .
The problem can be partitioned in solving k systems of linear equations formed by
using the k columns of matrix B. Thus, using k times the ANN of Figure 2, we can
generate the k columns of matrix X. Another alternative is to use a 3-D ANN with
k NNs of Figure 2, in order to solve those equations. Notice that matrix A is stored in

556 Goulianas, Adamopoulos and Margaritis

the connections between the hidden and the output layer of all NNs involved, since the
coefficient matrix is the same for all systems. The configuration involves k NNs
working in parallel, as shown in Figure 3 with the same learning procedures in all
methods presented for every 2—D ANN. A special case of the matrix equation
problem is the solution of the system

AX=1 (1)

for A,X (nxn) matrices and I the (nxn) identity matrix. Then, the solution is
X=A"". Thus, it is possible to use n NNs of Figure 2, in order to invert a matrix A.

FE o)

o

)
=3

ii . é

Yix

Yox

o

g
-~
@

x>

Input Layer Hidden Layer Output Layer Training Set

Figure 3. Two-Layer 3-D Structured ANN for solving AX=B
4. EXPERIMENTAL RESULTS

To check the performance and the convergence behaviour of the proposed
algorithms for solving system Ax=b, we used some specific examples, and compare
the solutions to the least square (LS) solution. Also, we have drawn the corresponding
graphs showing the convergence (with respect to the minimisation of the Mean Square
Error) of the three algorithms through time in a VAX 4200 machine.

Example 1: The square linear system of equations to be solved is :

Structured Artifical Neural Networks 557

120807 05 =%, 1
04 15 03 01 jx, | |2
: = (22)
Bl O R 7 00 dae 3
01 050060 T2, 4
Given zero initial values to the synaptic weights, and using
E(x) =|Ax - b|’ (23)

as the total mean square error, the same used by Wang L.X. and Mendel J.-[20], the
convergence behaviour of the above training algorithms is shown in Figure 4, where
the horizontal axis denotes the training cycle t, and the vertical axis the mean square
error given in (23). With € = 105, ASD algorithm converges in 50 training cycles to the
solution

Xasp = [X1,%,%5,%,] =[-1.30014, 151324, -0.12329, 2.87085]"
with
fasp = [115 125 13,7,] =[0.00046, 000010, - 000078, 0.00235]"

which is close to the exact least squares solution of system (22)

x5 =[-1.29991, 1.51346, -0.12535, 2.87372]" (24)

obtained by using Greville’s algorithm, and better than the estimation obtained by
Wang L.X. and Mendel J. [20]

x=[—1.21653, 1.47053, 0.16055, 2.35300]T
L= [0.00548, 0.00265, 0.00465, 0‘00215]T

Given zero initial values to the synaptic weights, and using o= 0.01 as learning rate for
LMS and HSD, HSD algorithm (which issequivalent to the batch-LMS method)
converges in 1351 training cycles, with € = 107, to the solution

Xysp = [-1.29998, 1.51329, -0.12241, 2.87013]"
sy =[-0.00003, 0.00023, -0.00167, 0.00265]"

whereas incremental LMS algorithm converges in 1341 training cycles, with € = 10, to
the solution

X, =[-1.30002, 151330, -0.12242, 2.87016]"
rvs =[-0.00001, -0.00024, -0.00168, 0.00261]"

Comment 4.1: In order to allow a more meaningful comparison between the
incremental LMS method and HSD (or the equivalent batch-LMS method) one learning
step of incremental LMS algorithm is taken to mean a full cycle through the m
samples (the m lines of matrix A).

Comment 4.2: As it is shown in Figure 4, thesbehaviour of the incremental LMS and
HSD method is similar and the number of iterations needed for LMS and HSD to
converge is almost the same as stated in [1][21], whereas with the application of ASD

558 Goulianas, Adamopoulos and Margaritis

algorithm the mean square error is decreased rapidly, and the number of iterations
needed for convergence is too small compared to the other two methods.

Comment 4.3: For € = 10 the above algorithms converge to the least square solution
(24) of the system (22) but the number of iterations needed to converge is increased.

32 ASD
HSD
Q4 RS g e e fe LMS
E(x) 16
8 o
0 T B
100 1000

training cycle t
Figure 4. Convergence behaviour of LMS, HSD, and ASD for square linear system in Example 1

Example 2 : The underdetermined linear system of equations to be solved is:

X
X,
2.1 4 9 & 2
s 18 B Daiwe iy 25)
X
1 2 F =3 S 4/ {4
Xs
L X6

Given zero initial values to the synaptic weights, and using E(x)=3|Ax -b|* for the

total mean square error, as defined in (1), the convergence behaviour of the above
training algorithms is shown in Figure 5, where the horizontal axis denotes the training
cycle t, and the vertical axis the mean square error given in (1). With & = 105, ASD
algorithm converges in 8 training cycles to the solution

X usp =[0.08826, 0.10826, 0.27321, 0.50457, 038275, -0.30965]"
Fasp = [0.00029, 0.00001, -0.00076]"

which is a close estimation of the exact least square solution of the system (25), and
close to the estimation achieved by Cichocki and Unbehauen [3]

x =[0.0882, 0.1083, 0.2733, 0.5047, 0.3828, -0.3097]'

Given zero initial values to the synaptic weights, and using o= 0.01 as learning
coefficient for HSD and LMS, HSD algorithm converges in 24 training cycles, with € =
10'5, to the solution

Xysp =[0.08832, 0.10832, 0.27278, 0.50444, 0.38254, -0.30960]"
Fuso =[0.00254, -0.00112, -0.00133]"

whereas LMS converges in 23 training cycles, with € = 10'5, to the solution

Structured Artifical Neural Networks 559

X :[0.08827, 0.10834, 0.27281, 0.50451, 0.38255, -0.30965]T

s = [0.00256, -0.00085, -0.00071]"

| =——————ASD
HSD
oo LMS

1 10 100

training cycle t

Figure 5. Convergence behaviour of ASD, HSD, and LMS for underdetermined linear system for
Example 2

Example 3: The overdetermined linear system of equations to be solved s :

1 1

2 1
Xy

3 []: 2 6)
X,

4 3

5 3

Pt || 1 iy

Since system (26) is overdetermined, the application of the algorithms will give a least
squares solution, which minimises the mean square error defined in (1) but it will never
be zero. Thus, we use the following convergence criterion

Ax ="x“'” - x“’"l =Zn:|x§“') —xelg? @7
=1

in order to terminate the algorithms, with t=0,L... the training cycle. The convergence
behaviour of the above training algorithms is shown in Figure 6, where the horizontal
axis denotes the training cycle t, and the vertical axis the mean square error given in
(1. With € = 1075, given zero initial values to the synaptic weights, ASD algorithm
converges in 4 training cycles, with E(x) = 0.20000, to the solution

X0 =[%1,%;]" =[0.20000, 0.60000]"

which is in excellent agreement with the exact least square solution of the system (26)
x5 = [x,,x,]" =[020000, 0.60000]" (28)
obtained by using Greville’s algorithm. The residual vector of the ASD solution is

Tasp =111, 1,1, 5] =[-0.20000, 0.40000, 0.00000, -0.40000, 0.20000]"

This solution is better than the estimation achieved by Cichocki and Unbehauen [2]

560 Goulianas, Adamopoulos and Margaritis

x =[0.206, 0.598]"
r=[-0.196, 0.402, 0, -0.402, 0.196]"

Given zero initial values to the synaptic weights, and using o= 0.01 as learning
coefficient for HSD, the algorithm converges in 417 training cycles, with E(x) =
0.20000, to the solution

Xusp = [0.19909, 0.60025]"
fusp = [-0.20066, 0.39959, -0.00015, -0.39990, 0.20035]T

Given zero initial values to the synaptic weights, and using a= 0.01 as learning
coefficient for LMS, the algorithm converges in 456 training cycles, with E(x) =
0.22634, to the solution

X,s =[0.22298, 0.59080]'
fivs = [0.18622,0.40459,-0.00461,-0.41381,0.17699]'

ASD
HSD
i e LMS

1 10 100 1000

training cycle t

Figure 6. Convergence behaviour of ASD, HSD, and LMS for overdetermined linear system for
Example 3

Comment 4.4: If we use Ax=Nx“*” = x(”"‘ <10 instead of (27) for HSD and LMS

algorithm, HSD converges to the least square solution of the system (26) in 1502
training cycles, while the solution of LMS is getting worse, increasing the training
cycles and the residual error.

Discussion: For square and underdetermined linear systems of equations as in (22),25),
all three algorithms for small values of the learning rate (used in HSD and LMS)
converge to the same and only solution (the Least Square solution A™'b for square

systems or A'b for underdetermined) or a close estimation of the Least Square
solution. For such systems, the performance of ASD algorithm is better than HSD and
LMS (the number of iterations needed for ASD in order to converge is very small
compared to the others).

For overdetermined linear systems of equations as in (26), only ASD converge to the

Least Square solution A*b using the total error as defined in (1. HSD and LMS

converge to an approximation of A'b, with HSD giving a better approximation than
LMS. For such systems, the performance of ASD algorithm is better than HSD and
LMS.

Example 4: Find the pseudo-inverse of the singular matrix

Structured Artifical Neural Networks 561

12 08 07 05
04 15 03 ol ;

A= (29)
gl 05 17 05

0105 06 92

Applying the ANN of Figure 3 or the ANN of Figure 2 four times, and using [1,0,0,0]T,
[O,I,O,O]T, [0,0,1,0]T, [0,0,0,1]T as vector b, we can find the four columns of matrix
X=A".

Given zero initial values to the synaptic weights, and using a=0.01 as the learning
rate for HSD and LMS, ASD algorithm converges with g = 10, in 30 training cycles
for column |, in 37 training cycles for column 2, in 36 training cycles for column 3, and
in 40 training cycles for column 4, to the solution

099493 -037772 -028277 -0.17232
-026761 0.79883 -0.06353 0.09261

000769 -0.07447 080851 -0.60289
002377 -026244 -035240 110766

Xpsp =A" =

which is a good estimation of the Least Square solution obtained by using Greville’s
algorithm
099814 -038069 -028319 -017177
o |—026927 080037 -0.06314 009285
Xio=hi e 30)
000696 -0.07242 081198 -060585
002553 -026555 -035608 111188
HSD algorithm converges with € = 10° in 843 training cycles for column 1, in 841
training cycles for column 2, in 1059 training cycles for column 3, and in 1149 training
cycles for column 4, to the solution
099357 -037687 -028241 -0.17223
-0.26638 0.79808 -0.06333 0.09283
000809 -007493 080786 -0.60170
002376 -026215 -035099 110678

Xusp = A’ =

and LMS algorithm converges with € = 10” in 834 training cycles for column 1, in 834
training cycles for column 2, in 1049 training cycles for column 3, and in 1140 training
cycles for column 4, to the solution

099357 -037687 -028238 -017227
= -026641 079811 -0.06334 0.09284
™S T 000794 -007485 080790 060174
002394 -026227 -035107 110686
The convergence behaviour of the above training algorithms for finding the inverse
matrix of A in Example 4 is shown in Figure 7. As it can be seen, the behaviour of the
incremental LMS and HSD method is similar, ‘while the number of iterations needed

for LMS and HSD to converge is almost the same. With the application of ASD
algorithm the Mean Squared Error is decreased rapidly, and the number of iterations

562 Goulianas, Adamopoulos and Margaritis

needed for convergence is too small compared to the other two methods. If we use € =
10-9, the above algorithms converge to the least square solution (30) of the system (29)
but the number of iterations needed to converge is increased.

——ASD ' —
06 ASD)
05 —HSD
04 — LMS|
E(x) 03
02
01
04 + 4
i} 10 100 1000
tang ycat training cycle t
(a))
—ASD.
8-‘5’ ——HSD
04 ---- LM$)
E(x) 0,3
02
01
0+
1 10 100 1000
training cycle t training cycle t
© @

Figure 7. Convergence behaviour of ASD, HSD, and LMS algorithm for column 1 (a), column 2 (b), column
3 (c), and column 4 (d) of matrix A for matrix inversion in Example 4

5. CONCLUSIONS

In this paper we discussed the issue of a neural network design and implementation
for solving linear systems of equations. Delta Rule for network training is modified in
order to lead to a batch-LMS algorithm, whereas the use of an adaptive learning rate
implements the steepest descent method. We have proven the capability of the
proposed network for solving any kind of linear systems of equations. We used
numerical examples in order to demonstrate operating characteristics of the proposed
neural network. Simulations was performed to estimate the performance, ie. the

training cycles required to reduce the mean squared error by a fraction of =107, and
the comparison of the solutions taken to the least squares solution. The fact that
distinguishes our implementation from previous ones is the simplicity of its
architecture and its training algorithm, along with the fact that it exceeds the
limitations of matrix A needed to be SPD. In addition, the ASD training algorithm

proposed with adaptive stepsize o has neat convergence properties and guarantees fast
network convergence to the optimal solution for any kind of linear system of
equations but it is hard to be implemented in VLSI circuits because of the off-line
calculations needed and the size of matrix A, which can be too large. On the other
hand, the HSD algorithm (equivalent to batch-LMS) converges for sufficiently small

values of the stepsize o [7][21] to a solution close to the optimal solution but
convergence analysis is difficult and its convergence rate is very slow.

REFERENCES

[1] Battiti, R, "First- and Second-Order Methods for Learning: Between Steepest
Descent and Newton’s Method”, Neural Computation (1992), Vol. 4, pp. 141-166.

[2] Cichocki, A. and Unbehauen, R, "Neural Networks for Solving Systems of Linear-
Equations and Related Problems”, JEEE, Transactions on Circuits and Systems I -
Fundamental Theory and Applications, (1992), Vol 39, no. 2, pp. 124-138.

Structured Artifical Neural Networks 563

[3]

[4]
[5]
[6]
[7]

(1]

[12]
(13]
[14]
(15]
(16]
(17]
(18]
(19]

[20]

(21]

Cichocki, A. and Unbehauen, R, "Simplified Neural Networks for Solving Linear
Least Squares and Total Least Squares Problems in Real Time”, IEEE
Transactions on Neural Networks, (1994), Vol. 5, no. 6, pp. 910-923.

Golub, G. H, and Van Loan CF, "Matrix Computations”, The John Hopkins
University Press, Baltimore, MD, 1983

Hassoun, M. H, "Fundamentals of Artificial Neural Networks”, The MIT Press,
Cambridge, Massachusetts 02142, 1995,

Kohonen T, "Correlation Matrix Memories”, IEEE Transactions on Computers, C-
21 (4), pp. 353-359, 1972.

Kohonen T, "An Adaptive Associative Memory Principle” IEEE Transactions on
Computers, pp. 444-445, 1974.

Kohonen T, "Self-Organisation and Associative Memory”, Springer-Verlag, 1984.
Luenberger, "Introduction to Linear and Non-linear Programming”, Addjson-
Wesley, Reading, MA, 1973.

Luo Zhi-Quan, "On the Convergence of the LMS Algorithm with Adaptive
Learning Rate for Linear Feedforward Networks”, Neural Computation (1991),
Vol. 3, pp. 226-245.

Margaritis K.G, Adamopoulos M., Goulianas K, and Evans D.J, "Artificial Neural
Networks and Iterative Linear Algebra Methods”, Parallel Algorithms and
Applications (1994), Vol. 3, pp. 31-44.

Maren A.J, Harston C.T, Pap R.M, "Handbook of neural computing applications”,
Academic Press, 1990.

Polycarpou M. and Ioannou P, "Learning and Convergence Analysis of Neural-
Type Structured Networks”, JEEE Transactions on Neural Networks (1992), Vol
3, no. 1, pp. 39-50.

Rosenblatt F, "Principles of neurodynamics”, Spartan Books, 1962.

Rumelhart D.E, McClelland J, "Parallel distributed processing: Explorations in the
microstructure of cognition”, MIT Press, 1986.

Rumelhart D.E, Hinton G.E, and Williams R.J, "Learning Internal representation
by error propagation”, Parallel Distributed Processing I, Rumelhart D.E, and
McClelland J, Eds, Cambridge, MA, MIT Press, 1986.

Simpson PK, "Artificial Neural Systems”, Pergamon Press, 1990.

Tsypkin, Ya. Z, "Adaptation and Learning in Automatic Systems", translated by Z.
J. Nikolic, Academic Press, New York, 1971.

Wang L. X. and Mendel, J.M, “Parallel Structured Networks for Solving a Wide
Variety of Matrix Algebra Problems”, Journal of Parallel and Distributed
Computing (1992), Vol. 14, pp. 236-247.

Wang L. X. and Mendel, J. M, "Three-Dimensional Structured Networks for
Matrix Equation Solving”, IEEE Transactions on Computers (1991), Vol. 40, no. 12,
pp. 1337-1346.

Widrow B, and Lehr M, "30 Years of Adaptive Neural Networks: Perceptron,
Madaline and Backpropagation”, Proceedings of the 1EEE, Vol. 78, No. 9, pp.
1415-1442, 1990.

